Holey Schröder designs of type 4n u1
نویسندگان
چکیده
A holey Schröder design of type h1 1 h n2 2 . . . h nk k (HSD(h n1 1 h n2 2 . . . h nk k )) is equivalent to a frame idempotent Schröder quasigroup (FISQ(h1 1 h n2 2 . . . hk k )) of order n with ni missing subquasigroups (holes) of order hi, 1 ≤ i ≤ k, which are disjoint and spanning, that is, ∑1≤i≤k nihi = n. In this paper, we consider the existence of HSD(4u) for 0 ≤ u ≤ 36 and show that these HSDs exist if and only if 0 ≤ u ≤ 2n− 2 and n ≥ 4 with just nine possible exceptions. We also investigate the existence of HSD(4u) for general u and prove that there exists an HSD(4u) for u ≥ 37 and n ≥ 2u/3 + 7.
منابع مشابه
Existence of HSOLSSOMs of type 4nu1
This paper investigates the existence of holey self-orthogonal Latin squares with a symmetric orthogonal mate of type 4u (briefly HSOLSSOM(4u)). For u > 0, the necessary conditions for existence of such an HSOLSSOM are (1) u must be even, and (2) u ≤ (4n−4)/3, and either (n, u) = (4, 4) or n ≥ 5. We show that these conditions are sufficient except possibly (1) for 36 cases with n ≤ 37, (2) for ...
متن کاملSigned group orthogonal designs and their applications
Craigen introduced and studied signed group Hadamard matrices extensively in [1, 2]. Livinskyi [13], following Craigen’s lead, studied and provided a better estimate for the asymptotic existence of signed group Hadamard matrices and consequently improved the asymptotic existence of Hadamard matrices. In this paper, we introduce and study signed group orthogonal designs. The main results include...
متن کاملHoley Schrr Oder Designs of Type 2 N U 1
A holey Schrr oder design of type h n 1 1 h n 2 2 h n k k (HSD(h n 1 1 h n 2 2 h n k k)) is equivalent to a frame idempotent Schrr oder quasigroup (FISQ(h n 1 1 h n 2 2 h n k k)) of order m with n i missing subquasigroups (holes) of order h i ; 1 i k, which are disjoint and spanning, that is , P 1ik n i h i = m. In this paper, we rst consider the existence of HSD(2 n u 1) for 1 u 4 and show tha...
متن کاملOn the Twin Designs with the Ionin-type Parameters
Let 4n2 be the order of a Bush-type Hadamard matrix with q = (2n − 1)2 a prime power. It is shown that there is a weighing matrix W (4(q + qm−1 + · · ·+ q + 1)n, 4qn) which includes two symmetric designs with the Ionin–type parameters ν = 4(q + qm−1 + · · ·+ q + 1)n, κ = q(2n − n), λ = q(n − n) for every positive integer m. Noting that Bush–type Hadamard matrices of order 16n2 exist for all n f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 54 شماره
صفحات -
تاریخ انتشار 2012